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Abstract

Imaging of the magnetic structure of thin films by the Fresnel mode of Lorentz microscopy has been re-evaluated in terms of the

Ampérian current density within a sample. The conditions for which this imaging can be treated as linear are discussed for quantitative

application. Additionally, the consequences for magnetic phase reconstruction using the transport of intensity equation for defocused

images are considered. While the range of applicability may initially appear rather limited examples of objects containing different spatial

frequency components are used to illustrate the possibilities where relatively large defocus values may be used.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Imaging of magnetic domain walls has been one of the
main features of the Fresnel mode of Lorentz microscopy
in the transmission electron microscope (TEM) since its
inception [1]. A number of authors have used this
technique to infer the domain wall width from images
taken at different values of defocus with good agreement
between experiment and theory [2,3]. More recently the
transport of intensity equation (TIE) [4] has been devel-
oped to allow Fresnel images to quantitatively reconstruct
the phase associated with magnetic thin films [5,6]. While
Fresnel imaging of domain walls is generally considered to
be a non-linear imaging mode, the TIE method offers the
possibility that, under certain conditions, the information
in the images can be linearly interpreted and so used
directly in a quantitative manner.

In this paper, we address the linear aspects of Fresnel
imaging for magnetic thin films and relate this to the TIE
results that have recently been published. In Section 2 we
show that, under suitable conditions, the Fresnel image
intensity of a magnetic material may be interpreted linearly
e front matter r 2005 Elsevier B.V. All rights reserved.
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in terms of the Ampérian current density component
parallel to the electron beam. However, while it can be
proven that Fresnel images can be used successfully to
reproduce, for example, domain wall profiles caution must
be exercised when presenting such data. In Section 3 model
calculations are presented from some simple 1-D wall
structures to illustrate the power of the technique and
establish useful operating conditions. The consequences for
TIE reconstruction of magnetic films are then presented in
Section 4, with conclusions and future prospects for this
type of imaging considered in Section 5.
2. Quantitative magnetic Fresnel imaging

Understanding the contrast mechanisms in Fresnel
imaging is well established in the TEM [7–9]. Mostly this
has been applied to pure phase objects with particular
emphasis on weak phase objects. Generally, magnetic thin
films may not be regarded as weak phase objects. However,
the recent applications of the TIE formulation, which
utilises Fresnel images, has opened up the possibility of a
more general phase imaging technique. In principle it offers
a non-holographic reconstruction of the object phase. In
this section, the wave-optical origin of Fresnel contrast is
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considered for magnetic materials and the range of
applicability of the linear regime of imaging addressed.

The wave optical derivation of the Fresnel image
intensity has been tackled by a number of authors
[6,7,10,11]. For simplicity, we consider an object exhibiting
only phase variation with unit amplitude everywhere. We
write the phase function as fðrÞ, noting that the phase is a
2-D function for the in-plane spatial coordinates of the
sample r given as (x,y). The electron wave (travelling in the
z direction) is taken as uniform prior to the sample.
Following the derivations in the references quoted we can
derive the result, essentially Eq. (3) in Ref. [6], for the
intensity in the Fresnel image as

Iðr;DÞ ¼ 1�
Dl
2p
r2
?½fðrÞ� (1)

with l the electron wavelength, D the defocus distance and
r? the Laplacian relating to in-plane coordinates only. The
derivation assumes that higher order terms in defocus are
neglected. In effect the validity of this approach also
depends on the small angle approximation applied to the
contrast transfer function which we write as a 2-D
reciprocal space function in Fourier space (k space). The
approximation is valid for Dlk251. Therefore the image,
under these constraints, gives us linear information on the
in-plane Laplacian of the phase of the object function.
While the above equation is true for general phase objects
we now turn our attention specifically to magnetic
contributions to the phase. We return to the validity of
the approximation later.

We now consider the magnetic phase contribution to
gain an insight into the relationship between an object’s
magnetisation and its phase [12]. This will allow us to
interpret Eq. (1), i.e. the Fresnel image intensity, in terms
of the sample magnetisation. The phase associated with a
magnetic object can be written using the Aharonov–Bohm
effect [13] in terms of the magnetic vector potential (A).
The argument given in Ref. [12] is reproduced briefly here
to put in to the context of quantification of Fresnel
imaging, the phase is written as an integral along the
electron path:

fðrÞ ¼ �
e

_

Z 1
�1

A:dl (2)

with e the electronic charge and _ is Planck’s constant
divided by 2p. Now it would be useful to relate the phase to
the magnetisation and we proceed to show how this can be
achieved. Firstly, it is necessary to write down the form of
the magnetic vector potential. This can be found in most
textbooks on electromagnetism and we write here as a 3-D
function

AðrÞ ¼
1

4p

ZZZ
r � Bðr0Þ

jr� r0j
d3r0 (3)

with the integration over all sources having finite curl of
magnetic induction B ðr � Bðr0ÞÞ. Note in this case the
position vectors are in three dimensions. Further simplifi-
cation is achieved by noting that this function is a
convolution of r � BðrÞ and the geometric function 1=4pr

with r ¼ jrj. Furthermore, if we were to write this in
reciprocal space, i.e. the Fourier transform of A(r),
we see that

AðkÞ ¼
1

4pk2
FT ½r � BðrÞ�. (4)

Note particularly the 1/k2 term, makes magnetic Fresnel
image interpretation quite simple, as seen later. However, it
is important to understand that it is useful to think of the
magnetic vector potential in terms of the curl of the
magnetic induction. (This argument is effectively the same
as viewing the magnetic scalar potential written as a
convolution of the divergence of the magnetisation and the
function 1=4pr [14]).
The relevant quantity, r � BðrÞ, is just one of Maxwell’s

equations of electromagnetism and can be written in terms
of current densities with terms for conduction, Ampérian
and displacement currents. For a general description we
can retain all these terms so that r� BðrÞ ¼ moJðrÞ, with mo
the permeability of free space, in which all the current
density (J(r)) contributions are included. In many cases in
the TEM we deal with a static situation (i.e. no
displacement currents) and there are no conduction
currents present. In such cases the curl of magnetic
induction and magnetisation are the same except for the
multiplicative mo term. Therefore we can now identify the
Ampérian current density as the important term and this is
simply r�MðrÞ.
Going back to the equation for the phase we can now

write this to include the Ampérian current density as

fðrÞ ¼ �
emo
4p_r
�

Z 1
�1

ðr �MðrÞÞ � dl (5)

with the symbol � denoting a convolution in 2-D here. It
should be noted that we now have the local quantity
associated with the magnetisation in the sample that results
in contrast in the Fresnel image, namely the integral of the
Ampérian current density component along the electron
path. In the simplest case the thin film plane is normal to
the electron beam (z direction) with no variation of
magnetisation through the film thickness (t). Therefore
the integral part of (5) becomes ððr �MðrÞÞ:ẑÞt in this
instance. We can now see that the out-of-plane component
of Ampérian current density is responsible for the contrast
in Lorentz Fresnel imaging. In general it is the component
parallel to the electron path.
Putting this into the equation for the image intensity

Eq. (1) we see, at first, what appears to be a rather complex
function. At this point we note that in reciprocal space the
Laplacian of a function is proportional to k2 and that the
Fourier transform of the 1=4pr term is proportional to 1/k2

[15,16]. In combining this information, i.e. taking the
Fourier transform of Eq. (1), substituting the transformed
phase and then taking the inverse transform, we are
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Table 1

Illustration of characteristic resolution for transfer function due to defocus

for linear regime and the location of the first zero

D (mm) Linear d(nm) 1st zero d(nm)

2 7.1 2.2

5 11.2 3.5

10 15.8 5.0

20 22.4 7.1

50 35.4 11.2

100 50.0 15.8

200 70.7 22.4

500 111.8 35.4

1000 158.1 50.0

The calculated values are from the spatial frequencies at which these

points are located for 200 kV electrons.
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left with

Iðr;DÞ ¼ 1� D
emolt

h
ðr �MðrÞÞ:ẑ (6)

which is the intensity of a Fresnel image at small defocus D
for a thin film normal to the beam with no magnetisation
variation through the thickness. Note that the denominator
contains just Planck’s constant, h, rather than _. For the
case of variable magnetisation and the beam not normal to
the film plane the curl of the magnetisation term will be an
integral through the thickness of the projected film. We
return to the specifics of magnetisation curl distributions in
the next section, with examples from domain walls being
analysed.

We return to the issue of the range of defocus values
under which the assumptions leading to Eq. (6) being valid
apply. This is of particular importance if Fresnel images
are to be treated in a quantitative manner. Furthermore
this is very relevant to the range of validity of the TIE
equation. The assumption regarding the small defocus
range centred on rewriting the contrast transfer function [6]
in the limit of the small angle approximation i.e. Dlk251
which has also been discussed by other authors [10,11]. The
spatial frequencies in the image determine the extent with
which we can apply this equation for a given defocus. This
can be illustrated simply by looking at the contrast transfer
function for this situation TðkÞ ¼ sinðplDk2Þ. (Note we
have omitted the factor 2 that normally multiplies this
function). An example of a transfer function for a system
dominated by the defocus term is shown in Fig. 1. Here the
defocus has been chosen to be 20 mm and the transfer
function is shown by the solid line. For comparison the
function T 0ðkÞ ¼ plDk2 i.e. the small angle approximation
is shown by the lighter coloured line and it is apparent that
the two lines start to deviate at spatial frequencies above
0.05 nm�1. The condition for small defocus is the region
below which the curves are effectively identical. Also of
note is the first point at which the transfer function crosses
the axis ðDlk2 ¼ 1Þ. Up to the latter point all the spatial
frequency information is transferred with the same sign.
2.0
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Fig. 1. Curves showing the TEM transfer functions T(k) and T 0(k) for

small k values with a defocus of 20mm. Both the departure from the linear

regime and the first zero of the transfer function can be observed.
From these two conditions it is possible to assign a
resolution (d) of spatial frequency information using jkj ¼
1=d and this is shown in Table 1 for 200 kV electrons. In
the case of the linear imaging condition we have used the
limit Dlk2 ¼ 0:1 to maintain linear behaviour consistent
with Fig. 1. It is apparent that the resolution for the linear
region limit is poorer than that defined by the first zero of
the transfer function. To be able to assess the meaning and
possible validity of these figures it is necessary to look at
some examples and determine the practical regime of use
for a given defocus and the signal levels involved.

3. Results from simulated images

Eq. (6) reveals that image intensity can be calculated
easily from knowledge of the microscope parameters and
the out of plane component of magnetisation curl when the
linear imaging conditions are applicable. However it,
would be instructive to calculate the images using the
correct aberration function for any defocus and then
compare the expected results with the linear regime given
by Eq. (6). Once an object’s magnetisation distribution has
been defined, calculation of the phase can be made from
Eq. (5) or by using an algorithm based on Fourier series
representation of the magnetisation [17] which we have
incorporated into our image processing software [18]. The
exit wave and the effect of aberrations are then calculated
as from standard wave optical treatment [7,8]. The image
wave is then calculated by an inverse Fourier transform of
the aberrated wave and then multiplied by its complex
conjugate to give the intensity. We used microscope
parameters based on a Lorentz lens in a FEI Tecnai
TEM operating at 200 kV with Cs ¼ 8000mm and
l ¼ 2.51 pm.
The process described above can be calculated for any

magnetisation distribution in a thin film and we have used
it for images simulated from micromagnetic packages
freely available in the public domain such as such as Object
Oriented Micromagnetic Framework (OOMMF) [19].
However, to illustrate the use of the calculations detailed
in this paper we have decided to concentrate on simple 1-D
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Fig. 2. Spatial variation of out of plane component of r�M across a

domain wall for the three wall models described in the text each having a

domain wall width parameter d ¼ 20 nm.
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wall models. While 1-D wall models can have a long range
and detailed structure e.g. see Ref. [20], we have chosen
three simple models of 1801 walls in thin films namely:
(i) linear, (ii) hyperbolic tangent and (iii) arctangent. The
wall models were respectively (i) MyðxÞ ¼Msx=d (for
�doxod), (ii) MyðxÞ ¼Ms tanhðx=dÞ and (iii) MyðxÞ ¼

Ms arctanðx=dÞ, with Ms the saturation magnetisation and
d the width parameter. These are chosen to illustrate the
viability of the method and give an indication of how the
detail of the wall structure is imaged. Furthermore as these
are 1-D walls, being a function of x only, we do not need to
bother with any x or z component of magnetisation as
these give no out of plane curl component for infinitely
long walls. For the wall width we use the definition of the
FWHM of qMyðxÞ=qx which gives a width of 2d for (i) and
(iii) and 1:76d for (ii). This definition is used as the Fresnel
image, under linear imaging conditions, for these 1-D walls
is the derivative of the y-component of magnetisation from
a simple consideration of Eq. (6). In each case a 2-D image
was created with a pair of parallel walls to ensure that the
phase was periodic. Each image comprised 1024� 1024
pixels with 1 nm pixel spacing. Calculations were also
performed with larger pixel spacing but the results did not
show appreciable changes for the systems studied here. If
we consider a pixel spacing p the largest spatial frequency
present in such an image is jkj ¼ 1=ð2pÞ. We can substitute
this spatial frequency into the two conditions defined at the
end of the last section defining the limit of the imaging
conditions and calculate an associated defocus. For the
linear limit we find D ¼ 0:1ð2pÞ2=l ¼ 0:16 mm and for no
reversal of the transfer function D ¼ ð2pÞ2=l ¼ 1:6mm. As
we shall see these figures indicate very small values of
defocus for observation of magnetic contrast under linear
imaging conditions. However, for many magnetic studies
there is little information at the highest spatial frequency
and therefore it is possible that higher defocus values can
be used.

An example of each type of wall profile from the
calculated r �M component is shown in Fig. 2 for
d ¼ 20 nm across a single wall in each case. The curl of
the magnetisation was calculated using fast Fourier trans-
forms. It is apparent that the smooth variations of the
arctangent and hyperbolic tangent have a form similar to
that measured from previous studies of domain walls in
thin films [3,18]. The linear wall on the other hand has a
top hat shape which is useful in that changes to this shape
are much more visually apparent with defocus. Obviously,
the linear wall has more significant high spatial frequency
components compared to the other two walls.

The parameter range chosen for study had values of the
domain wall width parameter of d ¼ 1; 5; 10; 20; 40 nm.
This ranged from very narrow walls to wall widths
expected in 20-nm-thick films of soft materials. The
material parameters chosen for the image calculation
corresponded to permalloy (Ni80Fe20) of thickness 20 nm
which has saturation magnetisation corresponding to
moMs ¼ 1:0T. However, the results for imaging intensity
can be scaled with both thickness and magnetisation as can
be seen from Eq. (6). The defocus values chosen for the
images were D ¼ 2; 20; 50; 100; 200 and 500 mm which was
expected to cover both the linear and non-linear images
ranges for most of the walls. Calculations were performed
using the commercial package Digital MicrographTM

available from Gatan Inc. We present results from
divergent walls (black lines on Fresnel images) for
consistency with earlier work [2]; however, within each
image data was also available for the convergent wall i.e.
the other wall of the pair. It was found that the data for
both types of wall were identical within the linear regime
with noticeable differences outside of this range. We can
see this effect more clearly when we discuss the TIE
formulation in the next section.
Assessment of the images taken at different defocus were

determined by the relative contrast level between the depth
of the divergent wall image and the background far away
from the wall i.e. the visibility [2]. Additionally, we also
measured the width of the wall determined from the
FWHM of the divergent wall image from the base level. In
the case of the wall visibility the value expected from the
linear imaging conditions is effectively the second term in
Eq. (6) which should increase linearly with defocus. The
width of the intensity profile should not change in the
linear regime and should be given by the value of 1.76 or
2:0d for the walls considered i.e. the wall width of the
magnetisation profile. However, outside of the linear range
this is expected to vary considerably.
Image calculations for the different walls showed very

similar behaviour; however, as expected the values of
defocus at which deviations from the linear approximation
were observed varied with the wall width parameter. This is
consistent as the resolution required varied with the spatial
frequencies contained within the object. The wall visibility
is shown in Fig. 3 for three of the arctangent walls. The
points indicate the measurements from the correctly
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Fig. 3. Variation of visibility (DI/I) of divergent domain wall as a function

of defocus for three arctangent walls with width parameters as indicated.

The points are from calculation of the simulated Fresnel images. The lines

represent predicted values for the linear imaging conditions as assumed

from Eq. (7) and plotted over the whole defocus range.
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Fig. 4. Plot of divergent domain wall width from Fresnel image

simulations for arctangent wall models with different width parameters

as indicated. The defined width of the wall from the magnetisation profile

is 2d.

Table 2

Calculated values of optimum defocus for Fresnel imaging of domain

walls with a wall width of 2d for 200 kV electrons

2d (nm) Linear D (mm) 1st zero D (mm)

2 0.1 0.4

10 3.2 10

20 12.7 40

40 50.9 160

80 203.7 640

The calculated values of defocus assume a spatial frequency of 2d for the

linear and first zero limits of the transfer function.
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calculated Fresnel images, whilst the lines are calculated
from what would be expected if the linear regime were
applicable over the whole defocus range. In the case of this
type of wall the linear relationship can easily be calculated
and is found to be

DI

I
¼

2DlemoMst

pdh
. (7)

The equation predicts the highest contrast for the
smallest width wall. For the walls given in Fig. 3 it is clear
that the deviation from the linear regime varies markedly
with the wall width. The larger the wall width the greater
range of defocus in which the measured visibility remains
close to the linear predictions. This is true for all the types
of wall simulated.

Another check against the linear imaging conditions is to
look at the wall width measurements from the images as a
function of defocus. These are shown in Fig. 4 for the range
of wall widths for the arctangent model. Again these results
are representative for all the wall models used. Here, we
would expect that within the linear range of imaging the
measured wall width would be constant whereas the width
should increase with defocus outside of this range. In the
case of the latter a linear increase is predicted from classical
optics for divergent walls [2]. From the data plotted in
Fig. 4 it can be seen that for the wider walls (d ¼ 20 and
40 nm) the walls have a reasonably constant width up to
about 100–200 mm defocus.

From both the visibility and wall width data it becomes
possible to estimate the region in which the linear region is
applicable and use the data from Table 1 to give an
indication of the resolution of the imaging mode. It is
apparent that the transition from the linear region is rather
gradual and it is possible to still obtain meaningful data
outside the condition given by the linear resolution value in
Table 1. As a reference Table 2 gives the defocus limit for
the linear region and at the first zero of the transfer
function is shown for a ‘‘resolution’’ corresponding to the
width of the domain wall for each of the walls considered.
It is clear that the defocus values given here are much larger
than those associated with the maximum possible spatial
frequencies in the image calculated earlier from the pixel
spacing.
While the arguments presented above give a good

indication of the validity of the technique for the
dimensions of the magnetic structures simulated, we can
look in more detail at the simulated profiles to visually
inspect the variation of the wall structures through a range
of defocus values. This is shown in Figs. 5 and 6 for linear
and arctangent walls, respectively, with width parameter
d ¼ 20 nm. The walls have been scaled to the peak intensity
variation at the smallest defocus assuming a linear increase
with focus. Therefore the highest focus values have smaller
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peaks consistent with the data shown in Fig. 3. The
variation in wall shape with defocus is much more
pronounced for the linear wall than the arctangent wall.
This is not too surprising as the step like nature of the curl
of the magnetisation for the linear wall results in greater
high spatial frequency components. However, the wall does
maintain a reasonably sound profile up to 200 mm defocus
although the edges are beginning to show considerable
rounding. In the case of the arctangent wall the profile
shape is rather less sensitive to defocus although broad-
ening and reduction in the peak amplitude is clearly visible
at 500 mm defocus. For this wall which has a width of
40 nm it is clear that for the figures given in Table 2 the
defocus value for the first zero (160 mm) will still give a
reasonable profile even though higher spatial frequency
components have been suppressed, being outside the linear
range. Of course it would be preferable to use the smaller
defocus at the limit of the linear range (50 mm), however,
the visibility of the wall is considerably reduced in this case
as can be seen from Fig. 3. One must remember that the
‘‘resolution’’ associated with the wall width here means
that we expect some degradation of the signal compared to
the r �M profile as there are higher spatial frequency
contributions to the profile above this resolution. We can
see this by comparing Fig. 2 and Figs. 5 and 6, though it is
much more apparent in Fig. 5.

4. Relevance to transport of intensity equation

We note that the validity of quantitative Fresnel imaging
discussed here applies equally to magnetic phase recon-
struction using the TIE method [4]. While the phase
functions tend to be rather smooth and slowly varying
functions, taking the derivate gives induction component
profiles whilst the Laplacian gives the magnetisation curl
component discussed above. In TIE the normal procedure
is to take three Fresnel images: one in-focus and two
equally over and under focus. The useful phase informa-
tion is contained in the difference between the out of focus
images. Hence the visibility signal associated with the walls
given in Fig. 3 will be doubled in the difference image for a
given defocus. However, this has to be offset with
considerations of image registration and alignment re-
quired in the TIE method.
Using TIE is becoming an increasingly common method

for studying the magnetic structure of thin films
[5,10,15,21]. When making comparisons between experi-
mental data and simulations we have to take care in how
the results are presented. Lorentz Fresnel images show the
curl of the magnetisation in the linear imaging regime
which is effectively the second derivative of the magnetic
phase. The smoothly varying phase will certainly compare
more favourably to the original profile even at the larger
defocus and we now show how comparisons fare for the
domain walls considered in the previous section.
We can show how this manifests itself by giving results

from TIE phase reconstructions from calculated images.
Details of the reconstruction can be found in a number of
papers [4,6]. As an example we look at the linear wall
having wall width of 40 nm (d ¼ 20 nm). Fig. 7 shows the
input phase and the TIE reconstructed phase for defocus
values of 20 and 500 mm across a linear domain wall.
Although the latter definitely has a larger deviation from
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the input phase, it is very apparent that the phase, which
varies smoothly across the domain wall, does not appear to
change markedly with defocus from the TIE reconstruc-
tion. Compare this with the variation seen in the traces
across the wall in Fig. 5 from the Fresnel images at the
same defocus values. Taking the derivative of the phase
across the wall is the basis of the induction profile,
integrated along the electron path [22]. The induction
profiles are shown in Fig. 8 for the linear wall and here the
difference for the 500 mm TIE reconstruction is marked.
While the centre of the wall shows a section of nearly linear
variation the slope is larger than that associated with the
input phase. Furthermore the extremities of the wall are
considerably rounded indicating a loss of the high spatial
frequency components in the profile. However, the same
reconstructions from a hyperbolic tangent or arctangent
function with the same width parameter show excellent
reconstruction even at the 500 mm defocus. This is not so
surprising when looking at Fig. 6. Of course, the phase
gradient profiles of these trigonometric functions do not
have the significant high spatial frequency components that
are present in the linear wall.
5. Conclusions

The conditions for quantitative Lorentz TEM have been
established and analysed to aid interpretation of images
taken in this mode. It is apparent that great care must be
taken if truly quantitative results are to be obtained either
in the Fresnel images themselves or in reconstructed phase
data.
Detailed analysis of the formation of Fresnel images of

magnetic thin films has shown that linear imaging can be
achieved. Under these conditions the Fresnel images reveal
the Laplacian of the sample phase function which can be
directly related to the magnetisation curl component in the
direction of the electron beam i.e. the Ampérian current
density component in the same direction. Image simulation
has allowed us to explore the linear and non-linear regime
of the Fresnel mode with domain walls being used as
examples. Although the linetraces from the Fresnel images
show visible differences when moving into the non-linear
range, this would not necessarily be apparent from a visual
inspection of a grey scale image. We note that the linear
domain wall showed up the most marked differences when
moving outside the linear limit. The difference in images of
walls described by trigonometric functions is much less
apparent even over a large range of defocus. At large
defocus all walls of the same width will appear to have a
similar form, e.g. the profiles of the d ¼ 20 mm linear and
arctangent walls at 500 mm defocus appear almost the same
(Fig. 2). This is even more apparent if one considers the
TIE reconstructed phase or phase gradient for such walls.
It is important that any image or reconstructed data
displayed has a clear indication of the defocus and spatial
extent with which it is taken with respect to the resolution
that is being sought.
As a final brief example we show some simulations

from the OOMMF package of a 20-nm-thick film
permalloy (Ni80Fe20) element with in-plane dimensions
1000 nm� 2000 nm. The cell size used for the calculation
was 5 nm� 5 nm� 20 nm and the ground state of the
element has a four domain flux closure structure with 901
and 1801 domain walls present. The out of plane Ampérian
current distribution is shown in Fig. 9(a). The question
arises as to what we might decide for the magnetic
resolution in order to determine the defocus value. In this
case a number of arguments can be made. For example the
domain size is of the order of 500 nm whereas the widths of
the 901 and 1801 domain walls are approximately 80 and
40 nm, respectively. Additionally we have a sharp magnetic
transition at the edges of the element which could be taken
as 5 or 10 nm. Using the limit of linear imaging for a
200 kV microscope we could initially decide on defocus
limits of 5 mm for 10 nm resolution, 100 mm for 50 nm
resolution and 10mm for 500 nm resolution. This can be
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Fig. 9. (a) Out of plane magnetisation curl component for OOMMF simulated 20-nm-thick magnetic element with dimensions 1000 nm� 200nm. (b)–(d)

Calculated Fresnel TEM images for the same element at defocus values of 5, 100 and 10 000mm.
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compared to a similar definition given when considering
magnetic objects as phase gratings [10].

The images corresponding to these defocus values are
shown in Figs. 9(b)–(d). Note that the contrast limits have
been set to show the range of values in an individual image
and not between images. Our first visual impression is that
the 5 and 100 mm defocus values look like an excellent
representation of the curl although the latter does appear
to have wider walls and edges than that associated with the
curl. By contrast the large 10mm defocus has distorted the
structure drastically. Bearing in mind the results from the
previous sections and the smooth form of the domain walls
expected in this type of sample we would expect the 5 and
100 mm defocus images to give reasonably quantitative
results of the magnetic structure for this element although
the structure at the edges of the sample where there is a
discontinuity in the phase gradient will be worst affected.
However, if the walls were linear then there would not be as
good agreement as detailed in the previous sections
particularly for the 100 mm defocus image. Also the level
of contrast is very different in these two images. Looking at
the signal visibility of the 1801 wall section we find this is
about 0.2% at the 5 mm defocus and 4% in the 100 mm
defocus image. From a practical point of view the lower
value of defocus would present problems with signal to
noise ratio especially if there are non-magnetic contribu-
tions to the image contrast.

The largest defocus value (10mm) appears very far from
the linear range from the viewpoint of linearly imaging the
Ampérian current density. This again highlights the care
that needs to be taken for imaging the Fresnel images. In a
recent paper [10] consideration was given to magnetic
domain structures as phase gratings and for a sinusoidal
magnetisation variation with domain size of 500 nm a
defocus value of 20mm was quoted. In that case we clearly
have a single spatial frequency component of magnetisa-
tion and therefore it is expected that this will be less
sensitive to variations in the transfer function with defocus
than domains which are more uniform in magnetisation. In
the former the Ampérian current density varies slowly over
the length of the domain while in the latter the Ampérian
current density is low within the domain and restricted to
the edge of close to the domain boundary i.e. spatial
frequencies corresponding to the edge and domain wall
width.
In the extreme case we could compare a sinusoidal

magnetisation variation with a square wave pattern both
having the same period. The phase associated with these
would be a sinusoid and a triangular wave, respectively.
Additionally, the Laplacian of these functions are sinusoid
for the former and for the square wave a function that is
zero everywhere except at the boundaries where there
would be spikes of alternate polarity. Linear Fresnel
images would be expected to have the form of the
Laplacian. As can be seen (Fig. 9(d)) using the domain
size as a guide for the defocus results in an image which
does not reflect the Ampérian current density. At the tens
of mm defocus values the sinusoid and square wave
magnetisation patterns would give very similar Fresnel
images as the high spatial frequency components in the
latter would be smoothed out at this defocus. This
emphasises the point made in Figs. 5–8 regarding the loss
of high spatial frequency information with increasing
defocus, in particular the forms of the intensity profiles
for the different walls at large defocus. In short, the spatial
frequencies associated with the Ampérian current density is
really a better guide for determining the defocus value.
A good idea would be to compare a Fresnel image

sequence with variable defocus through and beyond the
linear regime. Clearly, the visibility of the signal is crucial
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in determining the viability of the technique. In this respect,
the important parameters are sample magnetisation and
thickness together with required resolution and therefore
the associated defocus for linear imaging. We are currently
working on testing the outcomes of the results given in this
paper on experimental data for future publication.

The work in this paper has only been concerned with
interpretation of the magnetic phase contribution to
Fresnel imaging i.e. Lorentz TEM. In reality, most samples
will additionally have amplitude and non-magnetic phase
contributions and these will create problems in interpreting
the magnetic part of the contrast. Already, recent work has
been carried out to separate the magnetic and electrostatic
phase contributions from experimental images by taking
sets of images at different accelerating voltages [21].
However, the TIE imaging method presents considerable
challenges if it is to compete with established TEM
methods such as electron holography and differential
phase contrast [18]. Current experimental results in
conjunction with theoretical work and simulations indicate
that this is well worth pursuing.
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